T TĂVĂNĂ DAMĂ ANĂ ÎN TĂVĂ ÂNTĂ ÎN TĂVĂ ÎN TĂVĂ

Seat No.

HAN-003-1163005

M. Sc. (Sem. III) Examination June – 2023 Mathematics : EMT-3011 (Differential Geometry)

Faculty Code : 003 Subject Code : 1163005

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) There are total five questions.
- (2) Each question carries equal marks.
- (3) All the questions are compulsory.

1 Attempt any seven :

- (1) Define with example : Functions of class k.
- (2) Define with example : Simple surface.
- (3) Find the radius and curvature of the circle

 $3x^2 + 3y^2 - 24x - 12y + 12 = 0$

- (4) Is the curve $\alpha(x) = (x^{99}, 2x+5, 5x^2+7)$ is regular ? Justify your answer.
- (5) Define : Unit speed curve.
- (6) Define : The tangent plane and the normal plane.
- (7) Define : Normal curvature and Geodesic curvature. Also state the relation between k, k_n and k_g .
- (8) Write the $p-\alpha$ form of the equation of line and find its curvature.
- (9) Is the surface (x, y, 2x + 3y) simple ? Justify your answer.
- (10) Define : Right circular helix.

HAN-003-1163005]

[Contd...

14

- **2** Attempt the following :
 - (a) If g:[c,d]→[a,b] is a reparametrization of a curve segment α:[a,b]→ R³ then prove that the length of α is equal to the length of β = α ∘ g. Also derive the relation between their tangent planes.
 - (b) Is the curve $\alpha(t) = (\sin 6t \cos t, \sin 6t \sin t, 0)$ regular ? If so

then find the equation of tangent line to α at $t = \frac{\pi}{6}$.

OR

(a) Find the length of the curve

$$\alpha(t) = \left(2a\left(\sin^{-1}t + t\sqrt{1-t^2}\right), 2at^2, 4at\right) \text{ between the}$$

point $t = 5$ to $t = 10$.

- (b) Define the arc length of a curve and prove that the arc length is one-one function mapping (a,b) onto (c,d) and it is a reparametrization.
- **3** Attempt the following :
 - (a) Let $\alpha(s)$ be a unit speed curve whose image lies on a sphere of radius *r* and centre *m* then show that $k \neq 0$. Also if $\tau \neq 0$ then $\alpha m = -\rho N \rho' \sigma \beta$ and $r^2 = \rho^2 + (\rho' \sigma)^2$ (where $\rho = \frac{1}{k}$ and $\sigma = \frac{1}{\tau}$).
 - (b) Is the curve $\alpha(t) = (\sin t, \cos^2 t, \cos t)$ regular ? If so then find the equation of tangent line at $t = \frac{\pi}{4}$.

OR

(b) Find the arc length of the curve $\alpha(t) = (r \cos t, r \sin t, 0)$ and reparametrize the curve by its arc length. For the circular helix $\alpha(t) = (r \cos \omega s, r \sin \omega s, h \omega s)$, compute Frenet – Serret

apparatus (where $\omega = (r^2 + h^2)^{\frac{1}{2}}$).

HAN-003-1163005]

- 4 Attempt the following :
 - (a) Show that the curve $\alpha(S) = \left(\frac{5}{13}\cos S, \frac{8}{13} \sin S, -\frac{12}{13}\cos S\right)$ is a unit speed curve. Also compute its curvature and torsion.
 - (b) Let $f: X \to R^3$ be a simple surface and $f: v \to u$ is a co-ordinate transformation then prove that $y = X \circ f: v \to R^3$ is also a simple surface.

5 Attempt any **two** :

(a) List the coefficients of first fundamental forms and find the value of determinant of (g_{ij}) for the metric

$$ds^2 = dr^2 + r^2 \sin^2 \theta d\theta^2 dr^2 + d\theta^2$$

(b) For a simple surface $x: u \to R^3$ prove that

(i)
$$x_{ij} = L_{ij}n + \sum_{k} \Gamma_{ij}^{k} x_{k}$$

(ii) For any unit speed curve

$$\gamma(S) = x(\gamma'(S), \gamma^2(S)), k_n = \sum_{i,j} L_{ij}(\gamma^i)'(\gamma^j)' \text{ and}$$
$$k_g S = \sum_k \left[\left(\gamma^k \right)'' + \sum_{i,j} \Gamma^k_{ij}(\gamma^i)'(\gamma^j)' \right] x_k.$$

(c) For the surface $x(u^1, u^2) = (u^1, u^2, f(u^1, u^2))$ compute coefficients of second fundamental form and Christoffel symbols for the same.

3

(d) State and prove Frenet – Serret theorem.

14